A preliminary comparison of two ready-to-use automated recognition software for Nocturnal Bird Migration (NOCMIG)

Laura Solé-Bujalance ^a	Robert Manzano ^a	Lluís Brotons ^a
Cristian Pérez-Granados ^a	Maguiña Ramilo-Henry ^a	Manuel B. Morales ^b
David González-del Portillo ^b	Rick Junker ^c	Gerard Bota ^a
Júlia Gómez-Catasús ^b	Simon Gillings ^d	

estal de Catalunya (CTFC Universidad Autónoma de Madrid

British Trust for Ornithology

Introduction

✓ Passive Acoustic Monitoring (PAM) opens the door for

Methods

Sampling:

2,704.5 hours recorded during post-

- monitoring nocturnal bird migration (NOCMIG) at high temporal resolution.
- ✓ However, PAM generates extensive databases, requiring significant effort for analysis.
- \checkmark Few algorithmic tools that can identify avian vocalizations are available for automatic data analysis. Two of these software programs are BirdNET and BTO's Acoustic Pipeline; the latter has a NOCMIG data analysis modality.
- \checkmark This study provides the first comparative assessment between these two tools.

Objective

- We aim to compare the performance of BirdNET and BTO's Acoustic Pipeline for monitoring two nocturnal migrant species.
- \checkmark We estimated the precision and the confidence score (CS) threshold for considering only high-probability detections (50% probability) for each software and species.

Results

\checkmark We found differences between software and species

Green sandpiper (*Tringa ochropus*)

CS threshold (50% prob.): 0.67

Water rail (*Rallus aquaticus*)

Conclusions

✓ Software performance varied between species. ✓ BirdNET outperformed BTO's Acoustic Pipeline in detecting the Green Sandpiper. ✓ For the Green Sandpiper, the CS threshold for considering high-probability too high detections for both was recognizers. \checkmark None of the recognizer software was able to correctly predict Water Rail calls.

✓ Local acoustic conditions (e.g., cricket sounds) may affect software performance.

Precision: 52.87 %

Precision: 3.95 %

✓ Further research with different migrant

species and larger sample sizes (e.g.,

Several water rail false positives corresponded to cricket sound

validated predictions) is required.

CÁTEDRA STEPPE FORWARD

UAM Universidad Autónoma de Madrid

CONTACT

Laura Solé

Biodiversity and Animal Conservation Lab. Landscape Dynamics and Biodiversity programme. Forest Science and Technology Center of Catalonia (CTFC), Solsona, Catalonia, Spain.

∃M laura.sole@ctfc.cat

